« LTX is a small tokamak which is designed to experiment with
liquid lithium walls.

 Lithium is used in tokamaks to reduce plasma recycling. Plasma
recycling occurs when hot plasma ions touch the walls, cool off,
and re-enter the plasma, which causes edge cooling and energy
loss.

« The lithium is evaporated to coat the quadrants of stainless
steel shell, which form the plasma facing components (pfc).

Figure 1: CAD model of LTX. The lithium is evaporated onto the
inner shell. As shown, that shell consists of four quadrants — it is

split vertically and horizonally through the center. Those quadrants
are then vacuum sealed into a single shell

Figure 2: Photo of the LTX
external facade

3 . o i g

Overview

LTX takes several dozen plasma shots per day when running. A
shot involves running the machine and creating a new plasma.
* Every shot, various diagnostics are used to collect different
plasma parameters, which are necessary to understand the results
of the experiment. Some of these are direct measurements, such
as plasma current, and others are derived from the known
quantities, such as electron density and temperature.

« After the diagnostics collect the data, that data is digitized if
necessary, and then stored as a signal built from the numbers, in a
database. That database is called MDSplus.

« MDSplus is a tree database- meaning that there are levels. The
bottom level with the actual data is called a node.

* Figure 3 is a good example. The top level is LTX. Inside LTX are
the trees for each shot (shothumber). Inside each shot are
different categories of diagnostics, in this case magnetics. Inside
magnetics are the different kinds of magnetic diagnostics, like
Mirnov Coils (used to measure magnetic field strength at a point).
Inside the Mirnov diagnostics is the Mirnov we are looking for,
which itself has several attributes. The picture shows the first
part of this.

« This is similar to a computer directory [aka Folder] on a computer.
The pathname to raw data from a Mirnov Coil would be:

LT X/shotnum/Diagnostics/Magnetics/Mirnovs/#18/Raw_Data

Figure 3 - First Part of an MDS path

Traverser

* Traverser is a built-in MDSplus utility
to used to access the LTX data tree.

e Traverser is great for analysis or
changing of the tree, but it is not

meant to access the data itself.

Figure 4: Open Tree

Tree:

Shot ¢

EEEEEE

It prompts the user for a tree name
and shotnumber, and sends the
user to that subtree.

* Traverser can be used to add or edit

nodes as well. The tree can be

opened in read-only, r/w, or edit

L =5 JDACL, .,
L= JDACZ,..
L& JDEMSITY...

L2 FUELING, .,

L% LANGPROBE, , .

L& JHAGHETICS, ..

|~ CORHER_ROG

Ll ¥LODP

Ll YLDDP2

L& JB_PROBE, ..

o

i:w COHP
I~ UNCOHP

RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

Development of Web Tools for LTX-beta

Nathaniel Sokolow (Community College of Baltimore County), advised by Robert Kaita (PPPL)

This summer, development commenced on a suite of web tools (basically web applications) which could be used to plot

MDSplus data. Hopefully in the future the scope of the project will expand beyond just plotting, and may eventually be used on NSTX.
See the right panel first for an overview of LTX plotting through MDS and Scripting

Data Structure Diagram - How a Flask Application Works

Model

Definitions

Model: The source for the input page. Written as a Python class, in this application it provides
the HTML input form in which the user inputs the shotnumber and node they want. The input
template renders the model as HTML for your browser to show when you first go to the site.
The main advantage of writing this in Python instead of manually making the HTML form is the
convenience of having certain commands built into Python already, most notably form
validation (making sure the inputs fit the format expected - no HTML commands etc.)
Controller: The part of the Application that actually contains the commands to show the input
template (the model); and calls the compute method. It then saves the plot output from the
compute method, and adds that to the output template. This is the app the server runs.
Compute: Accepts the user parameters input to it by the Controller method (from the input
form), and uses them to output a plot. For LTX, this is a script which connects to the LTX tree

and plots the data from the desired node to the template.

The photos below are from a different project, but the projects are conceptually the same.

Figure 4: The Input Template. The controller
instructs the HTML to use the form class from
the model to show an input form

A Lo amplitude (m)

b o damping factor (kg/s)
w [6.28318530718 frequency (1/s)

T |18.8495559215 time interval

‘ Compute ‘

A Lo

b o1

w |6.28318530718

T |20

| Compute |

amplitude (m)
damping factor (kg/s)
frequency (1/s)

time interval

A=1, b=0.1, w=6.28319

1.0

0.5

0.0}

-0.5}

1.0 15

20

_

Plotting MDSplus Data Through Scope

 MDSplus has a built in plotting utility, called mdscope. This can be used
from any MDSplus installation. It is a GUI for MDSplus data plotting. There
is a newer, Java based version called Jscope.

e |t asks for an experiment name (i.e. LTX) and a shotnumber, and plots the
data from that node of the tree.

] 0z 04 0% 0 i

+ Point “* Zoom + Fan -« Copy 7 Updates I | Apply |

MDSplus Plotting And Other Uses With Scripts

 The best way to access MDSplus is through programming scripts, using
them to plot, save, or print the data from a node.

* Most popular programming languages can be used — Matlab, and IDL are
two popular ones. Object Oriented Languages like Python, Java, and C
are useful. MDSplus has an object based interface.

* At PPPL, the most common languages are IDL, MATLAB, and Python.
Python is considered the best language to learn now.

* A Python example of an MDSplus script is pictured here.

¥'/p/fdn/anaconda/bin/python #path to Python
from MDSplu=s import *

allows MDS functionality

import matplotlib.pyplot as plt #plotting functions

Connection{"lithos.RRRl.goy:8000") #connect= to the server hosting tree
t = Tree('"ltx", 1504291255) #opens lix tree with a given shotnupber
ip = t.getNode("Langprphe:I SINGLE"™) #accesses node

data = ip.record.datal() faccesses array of data inside node

time = ip.dim of () .data() ¥gets Limescale of data inside node

vy = plt.plot (timescale, dat.record.data()) #plots data ¥3. Limescals
¥parametrizing it as y allows for easier production of labels, legends ghc.
plt.show({) #outputs all plnt%

* First, it connects to the server port the tree is hosted at with MDSconnect
This function can even be used remotely if one is inside the firewall.

 Then it uses the getNode command to access the data array it will plot

e After that, it uses normal Python Matplotlib functions to plot and save a
figure.

* Other uses of MDS scripts can include: Listing the data stored in a node
into a CSV (Comma Seperated Variable) file, which can be imported into
an Excel spreadsheet; creating a logbook from metadata stored in the
tree, and watching videos taken by the fast camera of the plasma.

CONTACTS

NSTX Web Tools site: http://nstx.pppl.gov/nstx/Software/WebTools/index.html
Advisor: Bob Kaita - kaita@pppl.gov

Web Tools Build and Scripts: Nathaniel Sokolow - nathanielsokolow@gmail.com
Administrative and Server: Kenny Silber - ksilber@pppl.gov

MDSplus Installation: Greg Tchilinguarian - gtchilin@pppl.gov

LTX Web Tools Site: https://ltx-wtools.pppl.gov/

Davis paper: http://nstx.pppl.gov/nstx/Software/Publications/MDSplus_WebTools_Jan_2002.htm

Acknowledgments

» This work was made possible by funding from the Department of Energy for the Summer
Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE
Contract No.DE-AC02-09CH11466.

* Bob as my adviser was always willing to sign off on whatever technical flight of fancy | thought
necessary for the project, even if | didn’t fully understand what | was doing at the time.

* Much of the LTX team assisted me in the projects on this poster. Most notably, Paul Hughes, Dennis
Boyle, and Drew Elliott were always willing to help when | needed something, and Gus Smalley was
always available for technical stuff, from scope readings to wire soldering to anything else.

Qspecial thank you to Greg Tchilinguarian, Danny Ascione, and Kenny Silber, for allowing me to bug /
them for information about computer issues no one else could have helped with.

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts
http://nstx.pppl.gov/nstx/Software/WebTools/index.html
http://nstx.pppl.gov/nstx/Software/WebTools/index.html
http://nstx.pppl.gov/nstx/Software/WebTools/index.html
mailto:kaita@pppl.gov
mailto:nathanielsokolow@gmail.com
mailto:ksilber@pppl.gov
mailto:gtchilin@pppl.gov
https://ltx-wtools.pppl.gov/
https://ltx-wtools.pppl.gov/
https://ltx-wtools.pppl.gov/
https://ltx-wtools.pppl.gov/
http://nstx.pppl.gov/nstx/Software/Publications/MDSplus_WebTools_Jan_2002.htm
http://nstx.pppl.gov/nstx/Software/Publications/MDSplus_WebTools_Jan_2002.htm

